本日やること

- 1 ベクトル
 - ベクトルの平行・垂直
 - 直線・線分のベクトル表示
 - 三角形の表示
 - 空間のベクトル

ベクトルの平行・垂直

- ベクトルの平行条件・垂直条件

$$ec{a}
eq ec{0}$$
, $ec{b}
eq ec{0}$ のとき

(i)
$$\vec{a} \parallel \vec{b} \Leftrightarrow \vec{b} = m\vec{a}$$
 となるスカラー m がある

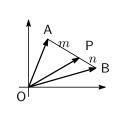
(ii)
$$\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0$$

(i): スカラー倍の定義から明らか。

(ii): 内積の定義から明らか。

線分・直線

線分の内分点のベクトル表示



P を線分 AB を $m: n \ (m > 0, n > 0)$ に内分 する点とすると

$$\Rightarrow \overrightarrow{\mathsf{OP}} = \frac{n\overrightarrow{\mathsf{OA}} + m\overrightarrow{\mathsf{OB}}}{m+n}$$

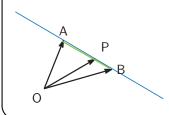
とくに P が AB の中点のとき

$$\Rightarrow \overrightarrow{\mathsf{OP}} = \frac{\overrightarrow{\mathsf{OA}} + \overrightarrow{\mathsf{OB}}}{2}$$

[確かめ] 仮定より
$$\overrightarrow{\mathsf{AP}} = \frac{m}{m+n} \overrightarrow{\mathsf{AB}}$$
 であり $\overrightarrow{\mathsf{OP}} = \overrightarrow{\mathsf{OA}} + \overrightarrow{\mathsf{AP}} = \overrightarrow{\mathsf{OA}} + \frac{m}{m+n} \overrightarrow{\mathsf{AB}} = \overrightarrow{\mathsf{OA}} + \frac{m}{m+n} \Big(\overrightarrow{\mathsf{OB}} - \overrightarrow{\mathsf{OA}} \Big)$
$$= \left(1 - \frac{m}{m+n} \right) \overrightarrow{\mathsf{OA}} + \frac{m}{m+n} \overrightarrow{\mathsf{OB}} = \frac{n}{m+n} \overrightarrow{\mathsf{OA}} + \frac{m}{m+n} \overrightarrow{\mathsf{OB}}$$

直線・線分

- 線分・直線のベクトルによる表示(パラメータ表示)



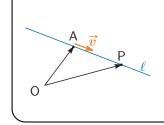
O:原点とするとき

- [1] 点 P が直線 AB 上にある $\Leftrightarrow \overrightarrow{\mathsf{OP}} = (1-t) \overrightarrow{\mathsf{OA}} + t \overrightarrow{\mathsf{OB}}, \ t$ は実数
- [2] 点 P が線分 AB 上にある $\Leftrightarrow \overrightarrow{\mathsf{OP}} = (1-t) \, \overrightarrow{\mathsf{OA}} + t \, \overrightarrow{\mathsf{OB}}, \ \ 0 \le t \le 1$

[考え方]
$$\overrightarrow{\mathsf{OP}} = \overrightarrow{\mathsf{OA}} + \overrightarrow{\mathsf{AP}}$$
 であるが P が直線 AB 上 \Leftrightarrow $\overrightarrow{\mathsf{AP}} = t \, \overrightarrow{\mathsf{AB}} \, \left(= t \, (\overrightarrow{\mathsf{OB}} - \overrightarrow{\mathsf{OA}}) \right)$ だから代入して整理すればよい。 とくに線分 AB 上にあるときは、 $0 \le t \le 1$

線分・直線

- 線分・直線のベクトルによる表示(パラメータ表示)



[3] ℓ は点 A を通りベクトル \overline{v} に平行な直線 P は ℓ 上の任意の点 とすると

$$\overrightarrow{\mathsf{OP}} = \overrightarrow{\mathsf{OA}} + t\overrightarrow{v}$$
 $(t$ は実数) $\cdots (\star)$

 \overrightarrow{v} を ℓ の方向ベクトル, t を パラメータという。 (*) によって直線を表す方法をパラメータ表示という。

[考え方] 前項 [1] で $\overrightarrow{\mathsf{AB}} = v$ と考えればよい。

線分・直線

[方程式表示との関係] $\mathsf{P}(x,y)$, $\mathsf{A}(x_0,y_0)$ $\vec{v}=(v_1,v_2)$ とすると

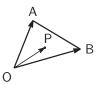
$$(\star) \Leftrightarrow \begin{cases} x = x_0 + tv_1 \\ y = y_0 + tv_2 \end{cases}$$

t を消去すると $v_1 \neq 0, v_2 \neq 0$ のとき

$$rac{x-x_0}{v_1} = rac{y-y_0}{v_2}$$
 ಶಕ್ತು ಕಟ್ಟು $y = rac{v_2}{v_1}(x-x_0) + y_0$

三角形

三角形のベクトルによる表示



△OAB において

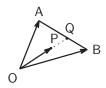
[1] 点 P が辺 AB 上にある

[2] 点 P が △OAB の境界を含む内部にある

$$\Leftrightarrow \overrightarrow{\mathsf{OP}} = t \, \overrightarrow{\mathsf{OA}} + s \, \overrightarrow{\mathsf{OB}}, \\ t + s \le 1, \ t \ge 0, \ s \ge 0 \quad \cdots \ 2$$

三角形

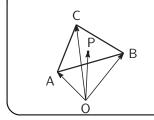
[考え方] [1] は前項 (直線のパラメータ表示) [1] において, t を s に (1-t) を t に置き換えればよい。



[2] は、図のように Q をとると [1] より
$$\overrightarrow{OQ} = t_1 \overrightarrow{OA} + s_1 \overrightarrow{OB}$$
, $t_1 + s_1 = 1$, $t_1 \ge 0$, $s_1 \ge 0$ また $\overrightarrow{OP} = r\overrightarrow{OQ}$, $0 \le r \le 1$ だから合わせて $\overrightarrow{OP} = rt_1 \overrightarrow{OA} + rs_1 \overrightarrow{OB}$, $rt_1 + rs_1 = r \le 1$, $rt_1 \ge 0$, $rs_1 \ge 0$ $rt_1 = t$, $rs_1 = s$ とおけば ② がえられる。

三角形

- 三角形のベクトルによる表示



- O を原点とする. △ABC において
- [3] 点 P が △ABC の境界を含む内部にある

$$\Leftrightarrow \overrightarrow{\mathsf{OP}} = t \, \overrightarrow{\mathsf{OA}} + s \, \overrightarrow{\mathsf{OB}} + r \, \overrightarrow{\mathsf{OC}},$$

$$t + s + r = 1, \ t \ge 0, \ s \ge 0, \ r \ge 0$$

[考え方] [2] より

$$\overrightarrow{\mathsf{AP}} = t \, \overrightarrow{\mathsf{AB}} + s \, \overrightarrow{\mathsf{AC}}, \quad t + s \le 1, \ t \ge 0, \ s \ge 0$$

となる
$$t$$
, s がある。一方

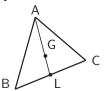
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}, \quad \overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA}, \quad \overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP},$$

$$\overrightarrow{\mathsf{OP}} = (1 - t - s)\overrightarrow{\mathsf{OA}} + t\overrightarrow{\mathsf{OB}} + s\overrightarrow{\mathsf{OC}}$$

ここで
$$(1-t-s)$$
, t , s を t , s , r に置き換えればよい。

三角形

[例題]



O を原点とする. \triangle ABC において $\vec{a} = \overrightarrow{OA}$, $\vec{b} = \overrightarrow{OB}$, $\vec{c} = \overrightarrow{OC}$ とおく. $\overrightarrow{OG} = \frac{1}{3}(\vec{a} + \vec{b} + \vec{c})$ となる点 G をとる。直線 AG は辺 BC を 2 等分することを示せ。(この点 G を \triangle ABC の重心という。)

[解]
$$\overrightarrow{AG} = \overrightarrow{OG} - \overrightarrow{OA} = \frac{1}{3}(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) - \overrightarrow{a} = \frac{2}{3}(\frac{\overrightarrow{b} + \overrightarrow{c}}{2} - \overrightarrow{a})$$

BC の中点を L とすると $\overrightarrow{\mathsf{OL}} = \frac{\overrightarrow{m{b}} + \overrightarrow{m{c}}}{2}$ だから

$$\overrightarrow{\mathsf{AG}} = \frac{2}{3}\overrightarrow{\mathsf{AL}}$$

したがって G は AL 上にある。

三角形

[発展問題] 少し難しくする。

O を原点とする. \triangle ABC において P, Q, R を BC, CA, AB の中点とする。このとき AP, BQ, CR は一点で交わることを示せ。(この点を \triangle ABC の重心という。)

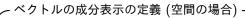
[参考] 「実数 t, s が $t\overrightarrow{\mathsf{AB}} + s\overrightarrow{\mathsf{AC}} = \mathbf{0}$ を満たすならば t = s = 0 となる」 ことを使う必要がある。

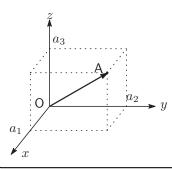
やってみてください。

空間のベクトル

空間のベクトルも平面の場合と全く同じに定義される。 和・スカラー倍・内積も同様に定義される。 成分表示に関する部分は特別に考える必要がある。

成分表示 (空間の場合)





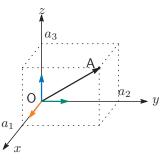
空間のベクトル \vec{a} が $\vec{a}=\overrightarrow{\mathsf{OA}}$,A の座標が (a_1,a_2,a_3) のとき

$$\vec{a} = (a_1, a_2, a_3)$$

と表す. これを \overrightarrow{a} の成分表示という. a_1 , a_2 , a_3 をそれぞれ x 成分, y 成分, z 成分という。

成分表示 (空間の場合)

· 基本ベクトル (空間の場合)



$$\vec{i} = (1,0,0): x$$
 軸方向の基本ベクトル

$$\overrightarrow{m{j}} = (0,1,0): y$$
 軸方向の基本ベクトル

$$\overrightarrow{m{k}} = (0,0,1):z$$
軸方向の基本ベクトル

$$\vec{a} = (a_1, a_2, a_3) \Leftrightarrow \vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$$

成分表示 (空間の場合)

- ベクトルの成分による計算 (空間の場合) -

$$\vec{a} = (a_1, a_2, a_3)$$
, $\vec{b} = (b_1, b_2, b_3)$ のとき

[I]:
$$\vec{a} = \vec{b} \iff a_1 = b_1, a_2 = b_2, a_3 = b_3$$

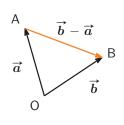
[II] :
$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

[III] :
$$\vec{a} + \vec{b} = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

[VI] :
$$m\vec{a} = (ma_1, ma_2, ma_3)$$
 (m はスカラー)

2点を結ぶベクトルとその成分表示 (空間の場合)

・2 点を結ぶベクトル (空間の場合)



$$\vec{a} = \overrightarrow{OA}, \vec{b} = \overrightarrow{OB}$$
 のとき
$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{OB} - \overrightarrow{OA} = \vec{b} - \vec{a}$$

さらに A の座標 (a_1,a_2,a_3) , B の座標 (b_1,b_2,b_3) のとき $\vec{a}=(a_1,a_2,a_3)$, $\vec{b}=(b_1,b_2,b_3)$ だから $\overrightarrow{\mathsf{AB}}=(b_1-a_1,b_2-a_2,b_3-a_3)$