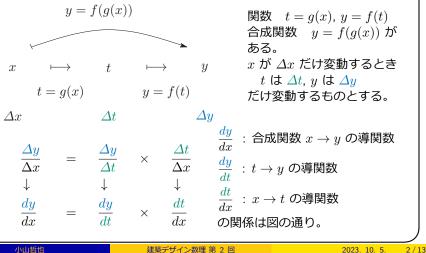
本日やること

- 1 微分法
 - 合成関数の微分法
 - 関数の増減・極値

合成関数の微分法

復習:合成関数の微分法



初等関数の導関数

合成関数の微分法

[例題] (1)
$$y=\sqrt{x^2+1}$$
 の導関数を求めよう。 $t=x^2+1$ とおく. 関数 $y=\sqrt{x^2+1}$ は $y=\sqrt{t}\cdots(A)$, $t=x^2+1\cdots(B)$

の合成関数である.

(B)
$$dt = \frac{d}{dx}(x^2 + 1) = 2x$$

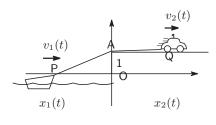
$$(A) \ \texttt{より} \ \frac{dy}{dt} = \frac{d}{dt}\sqrt{t} = \frac{d}{dt}t^{\frac{1}{2}} = \frac{1}{2}t^{\frac{1}{2}-1} = \frac{1}{2\sqrt{t}}$$

である。だから合成関数の微分法により

$$\frac{dy}{dx} = \frac{dy}{dt}\frac{dt}{dx} = \frac{1}{2\sqrt{t}}\times(2x) = \frac{x}{\sqrt{x^2+1}}$$
 논경공.

合成関数の微分法

[例題] (2) ボートと自動車が図のような位置関係にあるとき, ボートの速度 $v_1(t)$ と自動車の速度 $v_2(t)$ の関係を述べよ.



P, Q の x 座標を $x_1(t)$, $x_2(t)$ とする。 (時刻 *t* の関数である。)

$$v_1(t) = (x_1(t))', \quad v_2(t) = (x_2(t))'$$

$$AP = \sqrt{x_1(t)^2 + 1}$$

$$AQ = x_2(t)$$

$$AP + AQ = -\overline{x}$$

合成関数の微分法

両辺tで微分して

$$\frac{d}{dt}\sqrt{x_1(t)^2+1} + \frac{dx_2}{dt} = 0$$

 $x_1 = s$ とおいて合成関数の微分法を使うと

$$\begin{split} \frac{d}{dt}\sqrt{x_1(t)^2 + 1} &= \frac{ds}{dt}\frac{d}{ds}\sqrt{s^2 + 1} = x_1'(t)\frac{s}{\sqrt{s^2 + 1}} = v_1(t)\frac{x_1(t)}{\sqrt{x_1(t)^2 + 1}} \\ &= -v_1(t)\frac{\mathsf{OP}}{\mathsf{AP}} \\ \frac{dx_2}{dt} &= v_2(t) \end{split}$$

以上から

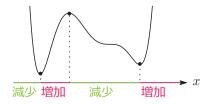
$$v_1(t) = \frac{\mathsf{AP}}{\mathsf{OP}} v_2(t)$$

5/13

微分法の応用

関数の増減・極値

[目標]



関数がどこで極値をとるかを知りたい。

6/13

関数の増減・極値

関数の増減

[単調増加]

[単調減少]

関数 f(x) が区間 I で単調増加であるとは $x_1, x_2 \in I, x_1 < x_2 \implies f(x_1) \le f(x_2)$ であること。

狭義単調増加であるとは

$$x_1, x_2 \in I, x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$
 であること。

関数 f(x) が区間 I で単調減少であるとは $x_1, x_2 \in I, x_1 < x_2 \implies f(x_1) \ge f(x_2)$ であること。

狭義単調減少であるとは

$$x_1, x_2 \in I, x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$$
 であること。

7/13

関数の増減・極値

関数の増減の判定条件

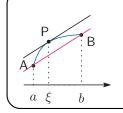
f(x):[a,b] で連続, (a,b) で微分可能 とする。

- (i) 区間 (a,b) 上で f'(x)=0 \iff 区間 (a,b) で f(x) は定数関数。
- (ii) 区間 (a,b) 上で f'(x) > 0 \Rightarrow 区間 (a,b) で f(x) は狭義単調増加。
- (iii) 区間 (a,b) 上で f'(x) < 0 ⇒ 区間 (a,b) で f(x) は狭義単調減少。

「ある点 a で f'(a)>0 \Rightarrow a の近くの区間で f(x) は狭義単調増加」は誤り。

関数の増減・極値

参考:Lagrange の平均値の定理



f(x): [a,b] で連続、(a,b) で微分可能

$$\Rightarrow f'(\xi) = \frac{f(b) - f(a)}{b - a}, \ a < \xi < b$$

となる *ξ* がある。

$$A(a, f(a))$$
, $B(b, f(b))$ とおくと

$$AB$$
 の傾き $=rac{f(b)-f(a)}{b-a}$

であることに注意せよ。定理は AB と平行な接線を持つ点 $\mathsf{P}(\xi,f(\xi))$ があるこ とを主張している。

関数の増減・極値

極値の定義

f(x) が点 a で極大になる

 \iff a の近所で最大になる

 \iff ある $\delta > 0$ があって $0 < |x - a| < \delta \Rightarrow f(x) < f(a)$

極小も同様。

極大値と極小値をあわせて極値という。

関数の増減・極値

極値の必要条件

$$f(x)$$
 が微分可能で、ある点 $\,a\,$ で極値をとる。

$$\Rightarrow f'(a) = 0$$

[確かめ] a で極大になるとする。 $x = a, x \neq a$ で f(x) < f(a) だから

$$x \to a + 0$$
 のとき $0 > \frac{f(x) - f(a)}{x - a} \to f'(a)$

だから
$$f'(a) \leq 0$$

だから
$$f'(a) \ge 0$$

あわせて
$$f'(a) = 0$$

関数の増減・極値

極値の十分条件

関数が微分可能で

- (i) 点 a を境に単調増加から単調減少に変わるとき a で極大。
- (ii) 点 a を境に単調減少から単調増加に変わるとき a で極小。

関数の増減・極値

[例題] $f(x) = 3x^4 - 4x^3$ の増減・極値を調べる。そのため 導関数の零点・符号 を調べる。

$$f'(x) = 12x^3 - 12x^2 = 12x^2(x-1)$$

f'(x) = 0 となる x の値は x = 0.1 のみ。このほかの点では極値をとらない。

$$x < 0$$
 では $x^2 > 0, x - 1 < 0$ だから $f'(x) < 0$ $0 < x < 1$ では $x^2 > 0, x - 1 < 0$ だから $f'(x) < 0$ $1 < x$ では $x^2 > 0, x - 1 > 0$ だから $f'(x) > 0$

増減表にまとめると

x	x < 0	0	0 < x < 1	1	1 < x
f'(x)	_	0	_	0	+
f(x)	>	0	¥	-1	7

x=1 で極小値 -1 をとる。

