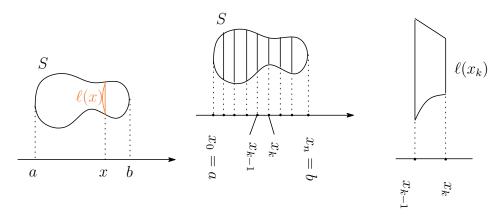
電気のための微分積分C 第5回解答

5.1.



左図のような図形を、点 (x,0) を通り x 軸に垂直な直線で切った切り口の長さを $\ell(x)$ とする.このとき図形の面積 S を $\ell(x)$ で表せ.簡単でよいからそうなる説明をつけること.

右図のようにSを分割しk番目の断片に着目すると、その面積は大体 $\ell(x_k) \times \Delta x_k$ で近似される。(ここで x_k はk番目の分点、 Δx_k はk番目の小区間の幅である。) したがってSは

$$S = \sum_{k=1}^{n} \ell(x_k) \Delta x_k$$

のように近似されるが

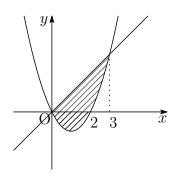
$$\lim \sum_{k=1}^n \ell(x_k) \Delta x_k = \int_a^b \ell(x) \, dx$$
 (lim は分割を細かくする極限)

であり、近似の誤差は極限を取ると0に近づくことが分かっているので

$$S = \int_{a}^{b} \ell(x) \, dx$$

である.

5.2. (1) 関数 $y = x^2 - 2x$, y = x のグラフの概形を書け. また, 二つのグラフの交点の座標を求めよ.



 $y=x^2-2x=x(x-2)$ であるから x=0 または x=2 のとき y=0 となるので x 軸との交点は (0,0) (2,0) である. また $y=(x-1)^2-1$ だから頂点が (1,-1) の放物線である. 下に凸であるのは明らか.

y = x は原点をとおり傾き1の直線である.

交点の座標は連立方程式

$$\begin{cases} y = x^2 - 2x, \\ y = x \end{cases}$$

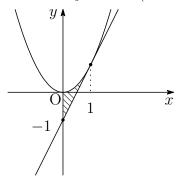
をといて (0,0) と (3,3).

(2) 関数 $y = x^2 - 2x$, y = x のグラフで囲まれる部分の面積を計算せよ. この部分は $0 \le x \le 3$ の範囲にあり、この範囲では直線 y = x が放物線 $y = x^2 - 2x$ の上方にある。

$$\int_0^3 \left\{ x - (x^2 - 2x) \right\} dx = \int_0^3 \left\{ -x^2 + 3x \right\} dx = \left[-\frac{1}{3}x^3 + \frac{3}{2}x^2 \right]_0^3 = \frac{9}{2}$$

5.3. (1) 放物線 $y = x^2$ とその点 (1,1) における接線を図示せよ。

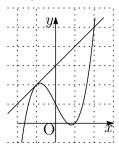
 $f(x)=x^2$ とおくと f'(x)=2x, したがって f'(1)=2 だから 点 (1,1) における接線の傾きは 2 である. 接線は 点 (1,1) を通り傾き 2 の直線であるから方程式は y-1=2(x-1), 即ち y=2x-1 である.



(2) 囲まれる図形は $y=x^2$ のグラフと直線 y=2x-1 で上下から挟まれて いるのでその面積は

$$S = \int_0^1 (x^2 - (2x - 1)) dx = \left[\frac{x^2}{3} - x^2 + x\right]_0^1 = \frac{1}{3}$$

5.4. (1) 曲線 $C: y = x^3 - 2x + 1$ の増減を調べよ。



$$\frac{\sqrt{6}}{3} < \frac{\sqrt{9}}{3} = 1$$
 に注意。

(2) C の x = -1 である点における接線 ℓ の方程式を求めよ。

f'(-1)=1 だから傾きは 1. f(-1)=2 だから接点は (-1,2) したがって ℓ は

$$y = f'(-1)(x+1) + 2 = x+3$$

(3) C と ℓ の交点を求めよ。

交点の座標
$$(x,y)$$
 は
$$\begin{cases} y = x^3 - 2x + 1 \\ y = x + 3 \end{cases}$$
 の解である。

接点は (-1,2) であるから x=-1, y=2 がひとつの解である。

yを消去して

$$x+3 = x^3 - 2x + 1 \iff x^3 - 3x - 2 = 0$$

x=-1 がひとつの解であるから x^3-3x-2 は x+1 で割り切れる。わり 算を実行すると

$$x^3 - 3x - 2 = (x+1)(x^2 - x - 2) = (x+1)(x+1)(x-2)$$

だから他の解は x=2. このとき y=5 だからもう一つの交点は (2,5). あわせて

$$(x,y) = (-1,2), (2,5)$$

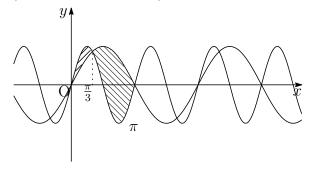
(4) C と ℓ で囲まれる部分の面積を求めよ。

ℓのほうが上にあるから

$$\int_{-1}^{2} ((x+3) - (x^3 - 2x + 1)) dx = \int_{-1}^{2} (-x^3 + 3x + 2) dx = \left[-\frac{x^4}{4} + \frac{3}{2}x^2 + 2x \right]_{-1}^{2} = \frac{27}{4}$$

5.5. 区間 $[0,\pi]$ において、2つの曲線 $y=\sin 2x$ 、 $y=\sin x$ によって囲まれる図形の面積を求めよ.

 $y = \sin 2x$ は周期 π , $y = \sin x$ は周期 2π だから図示すると



となる.

 $y = \sin x \, \, \mathcal{E} \, y = \sin 2x \, \, \mathcal{O}$ 交点は

連立方程式

$$\begin{cases} y = \sin x \\ y = \sin 2x \end{cases}$$

を解けば求まる.

 $\sin 2x - \sin x = 0$ であるが $\sin 2x = 2\sin x \cos x$ だから

$$\sin x(2\cos x - 1) = 0$$

これを満たすxの値は $0 \le x \le \pi$ の範囲では $x = 0, \frac{\pi}{3}, \pi$.

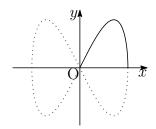
また, $0 \le x \le \frac{\pi}{3}$ の範囲では $\sin 2x \ge \sin x$, $\frac{\pi}{3} \le x \le \pi$ の範囲では $\sin 2x \le \sin x$, したがって囲まれる部分の面積は

$$S = \int_0^{\frac{\pi}{3}} (\sin 2x - \sin x) dx + \int_{\frac{\pi}{3}}^{\pi} (\sin x - \sin 2x) dx$$
$$= \left[-\frac{1}{2} \cos 2x + \cos x \right]_0^{\frac{\pi}{3}} + \left[\frac{1}{2} \cos 2x - \cos x \right]_{\frac{\pi}{3}}^{\pi}$$
$$= \frac{1}{4} + \frac{9}{4} = \frac{5}{2}$$

5.6. (*) $\begin{cases} x = \cos \theta \\ y = \sin(2\theta) \end{cases}$ $\left(0 \le \theta \le \frac{\pi}{2}\right)$ のようにパラメータ表示された曲線と x 軸で囲まれた部分の面積を求めよ。

曲線は図の様になる。Mathetatica で書いて見よ。コマンドは

ParametricPlot[{Cos[t], Sin[2 t]}, {t, 0, Pi/2}]



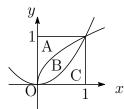
$$\ell(x) = y = \sin(2\theta), \quad dx = -\sin\theta \, d\theta$$

だから置換積分により

面積 =
$$\int_0^1 \ell(x) dx = \int_{\frac{\pi}{2}}^0 (-\sin(2\theta)\sin\theta) d\theta = \frac{1}{2} \int_{\frac{\pi}{2}}^0 (\cos(3\theta) - \cos\theta) d\theta = \frac{2}{3}$$

 $\sin A \sin B = -\frac{1}{2}(\cos(A+B) - \cos(A-B))$ を使った。

5.7. 曲線 $y=x^2, y=\sqrt{x}$ と直線 x=1, y=1 と x 軸, y 軸で囲まれる図のような部分の面積を求めよ。



$$B = \int_0^1 (\sqrt{x} - x^2) dx = \frac{1}{3}$$

$$C = \int_0^1 (x^2) dx = \frac{1}{3}$$

$$A = C = \frac{1}{3}$$

5.8. [発展] 3次関数 y=f(x) のグラフを C とし, C の $x=\alpha$ である点における接線を ℓ とする. ℓ と C のもう一つの交点の x 座標を β とする. C と ℓ で 囲まれる部分の面積を α , β で表せ.

各自考えるべし。